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1. Abstract

Metabolic dysfunction-associated fatty liver disease (MAFLD)
is an escalating global health concern, impacting approximately
25-30% of the global population. The heterogeneous nature of
MAFLD, which spans a spectrum from simple steatosis to steato-
hepatitis and fibrosis, necessitates precise phenotyping to optimize
therapeutic strategies. Current diagnostic and monitoring meth-
odologies have significant limitations in terms of disease classifi-
cation, risk stratification, and treatment selection. Although liver
biopsy is regarded as the reference standard, it is invasive, costly,
and subject to sampling variability. Conventional imaging modal-
ities and serum biomarkers provide an incomplete assessment of
the multifaceted pathophysiology of MAFLD. Emerging pharma-
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cotherapies targeting various pathogenic pathways require accurate
identification of specific disease phenotypes and severity stages.
Multiparametric ultrasound (mpUS), which integrates B-mode as-
sessment, elastography techniques, quantitative fat quantification,
inflammation markers, and vascular parameters, provides a com-
prehensive, noninvasive solution for MAFLD characterization.
This review examines the critical need for mpUS in addressing
current diagnostic limitations, enabling precise disease phenotyp-
ing, and guiding personalized treatment selection and monitoring
of therapeutic response. We propose that mpUS should serve as
the cornerstone of strategic MAFLD management, facilitating the
transition from one-size-fits-all approaches to precision medicine
for this complex disorder.
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Multiparametric ultrasound transforms MAFLD management from empirical to precision-based

approaches, serving as the essential diagnostic backbone for strategic therapeutic selection and

monitoring.
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2. Introduction
2.1: The Growing Burden of MAFLD

Metabolic dysfunction-associated fatty liver disease (MAFLD) has
emerged as the most prevalent chronic liver condition worldwide,
with its burden closely paralleling the epidemics of obesity, type
2 diabetes, and metabolic syndrome [1,2]. The recent nomencla-
ture shift from non-alcoholic fatty liver disease (NAFLD) to MA-
FLD reflects a paradigm shift toward positive diagnostic criteria
based on metabolic dysfunction rather than exclusion of alcohol
consumption [3]. This evolution in terminology underscores the
fundamental pathophysiological basis of metabolic dysregulation.
MAFLD encompasses a wide spectrum of liver pathologies, rang-
ing from simple hepatic steatosis to metabolic dysfunction-associ-
ated steatohepatitis (MASH, formerly NASH), advanced fibrosis,
cirrhosis, and hepatocellular carcinoma [4,5]. Progressive forms of
MAFLD, particularly those with significant fibrosis, are associated
with increased liver-related morbidity, cardiovascular disease, and
all-cause mortality [6,7]. Notably, MAFLD has become a leading
indication for liver transplantation in many developed countries,
and its prevalence continues to increase globally [8,9]. One of the
most significant challenges in MAFLD management is the marked
heterogeneity in disease presentation, progression and outcomes
[10]. Patients with comparable degrees of steatosis may exhibit
vastly different trajectories, with some progressing rapidly to fibro-
sis, while others remain stable for decades [11]. This heterogeneity
reflects the complex interplay between genetic factors, metabol-
ic comorbidities, environmental exposures, and gut microbiome
composition [12,13]. The multifactorial pathogenesis of MAFLD
involves lipotoxicity, oxidative stress, mitochondrial dysfunction,
endoplasmic reticulum stress, inflammatory cascades, and fibro-
genic signaling [14,15]. Different patients may exhibit predominant
activation of specific pathogenic pathways, potentially requiring
tailored therapeutic approaches for each patient. However, current
diagnostic paradigms inadequately capture this pathophysiological
complexity, limiting our ability to deliver precision medicine [16].
2.2 : The Treatment Landscape Evolution

The therapeutic landscape for MAFLD has evolved dramatically
in recent years, with multiple pharmacological agents in various
stages of clinical development targeting distinct pathogenic mech-
anisms [17,18]. These include:

» Metabolic modulators: Peroxisome proliferator-activated recep-
tor (PPAR) agonists, glucagon-like peptide-1 receptor agonists
(GLP-1 RAS), and thyroid hormone receptor-f3 agonists address-
ing insulin resistance and lipid metabolism [19,20]

+ Anti-inflammatory agents: Chemokine receptor antagonists and
anti-inflammatory compounds targeting hepatic inflammation [21].

« Antifibrotic therapies: Agents targeting fibrogenesis pathways,
including FXR agonists and ASK1 inhibitors [22,23].

» Combination therapies: Dual or triple combinations addressing
multiple pathogenic pathways simultaneously [24].

Each therapeutic class demonstrates efficacy in specific patient
subsets, disease stages or pathophysiological contexts. For instance,
GLP-1 receptor agonists are particularly beneficial in patients with
concomitant diabetes and obesity [25], whereas antifibrotic agents
may be most appropriate for patients with established fibrosis (26).
The emerging principle of precision medicine in MAFLD neces-
sitates accurate patient phenotyping to match individuals with the
most appropriate therapeutic interventions [27]. Despite advances
in therapeutics, a significant gap persists between the need for pre-
cise disease characterization and the capabilities of current diag-
nostic tools (28). This diagnostic gap manifests in several critical
areas, which will be explored in detail in this review.

3. Discussion

3.1: Liver Biopsy

has traditionally served as the reference standard for MAFLD di-
agnosis, grading, and staging (29,30). Histopathological assessment
evaluates steatosis, inflammation, hepatocellular ballooning, and fi-
brosis using standardized scoring systems like the NAFLD Activity
Score and fibrosis staging [31]. However, liver biopsy has signifi-
cant limitations in clinical practice. A) Sampling variability: A liver
biopsy samples only 1/50,000 of liver volume [32]. MAFLD shows
heterogeneous distribution of pathological features [33], leading
to fibrosis stage misclassification in 20-30% of cases [34,35]. B)
Invasiveness and complications: Liver biopsy risks include pain
(20-30%), bleeding (0.3-0.6%), and death (1 in 10,000) [37,38],
limiting its use for screening and monitoring [39]. C) Inter-ob-
server variability: Expert pathologists show moderate agreement
(kappa 0.4-0.7) for steatosis grading, inflammation, and ballooning
[41,42], with fibrosis staging discordance in 10-30% of cases [43].
D) Cost and accessibility: Biopsy costs $2,000-5,000 and requires
specialized expertise (44,45), limiting availability in resource-limit-
ed settings [46]. E) Unsuitability for monitoring: Its invasive nature
and cost prevent frequent disease monitoring [47,48]. F) Limited
functional information: Histopathology provides static tissue ar-
chitecture views but minimal insight into metabolic processes and
hepatic function (49,50) (Figure 1).
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Figure 1: Tools for Evaluation of MAFLD.
3.2. Serum Biomarkers: Incomplete Windows into Disease

Serum biomarkers and scoring systems have been developed to
assess MAFLD non-invasively, focusing on fibrosis detection [51].
These include simple indices (FIB-4, NAFLD Fibrosis Score,
APRI) and proprietary panels (Enhanced Liver Fibrosis test and
Fibro Test) [52,53]. While useful for excluding advanced fibrosis in
low-risk populations, these tools have limitations. Most biomarker
panels only distinguish advanced fibrosis (>F3) from earlier stag-
es but cannot differentiate intermediate stages (F1 vs. F2) [54,55],
insufficient for precision medicine [56]. Serum biomarkers primar-
ily assess fibrosis, providing minimal information about steatosis,
inflammation, and metabolic dysfunction [57], limiting their utility
for treatment selection [58]. Additionally, biomarker performance
is affected by age, sex, BMI, diabetes, and medications [59,60].
FIB-4 overestimates fibrosis in elderly patients and underestimates
it in young individuals [61], reducing diagnostic accuracy across
patient populations [62]. D) Inability to accurately assess steatosis:
Although the controlled attenuation parameter (CAP) addresses
this gap in vibration-controlled transient elastography platforms,
pure serum biomarkers do not reliably quantify hepatic fat content
[63]. The cytokeratin-18 fragments show promise for detecting he-
patocyte apoptosis and inflammation but lack widespread valida-
tion and standardization [64,65]. E) Poor monitoring of treatment
response: Serum biomarkers often show discordance with histo-
logical changes during therapeutic interventions [66]. Their slow
response to treatment and significant biological variability limits
their utility in monitoring disease modification [67,68].

3.3: Conventional Imaging: Qualitative and Limited

Traditional ultrasound, CT, and MRI have distinct limitations for
MAFLD assessment. B-mode ultrasound detects hepatic steatosis
through echogenicity but is qualitative, operator-dependent, and
insensitive to steatosis <20-30% [69,70]. It cannot differentiate
steatosis grades or assess inflammation without elastography [71].
Its performance deteriorates in obese patients, who have highest
MAFLD risk [72]. Unenhanced CT identifies moderate to severe
steatosis through liver-to-spleen attenuation ratios but uses ioniz-
ing radiation [73,74]. CT shows poor sensitivity for mild steato-
sis and cannot assess inflammation or early fibrosis [75]. While
MRI-PDFF provides accurate steatosis assessment and serves as
the non-invasive reference standard [76,77], standard MRI cannot
assess inflammation or fibrosis. MRE evaluates fibrosis effectively
[78] but requires specialized equipment not widely available [79].
Combined MRI-PDFF and MRE assessment is comprehensive
but expensive ($1,000-3,000), limiting accessibility [80,81]. Con-
ventional imaging typically assesses parameters separately, with
patients undergoing multiple tests without integration into a com-
prehensive profile [82]. This fragmented approach fails to capture
MAFLD’s multidimensional nature [83].

3.4: Multiparametric Ultrasound: Addressing the Diagnostic
and Therapeutic Gaps

Multiparametric ultrasound represents an integrated solution to the
limitations outlined above, combining multiple ultrasound-based
techniques into a comprehensive disease assessment [136,137].
The mpUS approach typically integrates
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3.4.1: Core Components of Multiparametric Ultrasound

Quantitative steatosis assessment: Advanced ultrasound techniques
like attenuation imaging, backscatter coefficient analysis, and speed
of sound measurement enable hepatic fat quantification compara-
ble to MRI-PDFF [138,139]. These methods provide continuous
fat quantification across the steatosis range [140]. Elastography
for fibrosis staging: Shear wave elastography (SWE) and transient
elastography measure liver stiffness for fibrosis [141,142]. Point
and 2D-SWE provide reliable fibrosis staging similar to MRE for
advanced fibrosis [143,144]. Meta-analyses show AUROCSs >0.85
for significant fibrosis and >0.90 for cirrhosis [145,146]. Inflam-
mation markers: Viscosity plane wave ultrasound and viscoelastic
parameters may indicate necro-inflammatory activity [147,148].
Dispersion slope parameters help distinguish MASH from simple
steatosis [149]. Vascular assessment: Doppler ultrasound assesses
portal vein velocity and hemodynamics to identify portal hyper-
tension [150,151,152]. Spleen stiffness correlates with portal hy-
pertension and complements liver stiffness assessment (153,154].
Texture analysis: Radiomics and machine learning extract features
from ultrasound images to identify disease patterns and outcomes
[155,156].

3.4.2 : Advantages of Multiparametric Ultrasound for MA-
FLD Management

Comprehensive phenotyping: mpUS integrates multiple parame-
ters to create patient profiles capturing steatosis severity, fibrosis
stage, inflammation, and hemodynamics [157]. This enables pre-
cision phenotyping unavailable with single-parameter approaches
[158]. Noninvasive and safe: Ultrasound has no radiation expo-
sure, allowing safe repeated examinations for disease monitoring
[159,160]. Cost-effective and accessible: mpUS is less expensive
than MRI ($200-500 vs. $1,000-3,000) and more widely available
in primary care settings [161,162], enabling population screening
[163]. Point-of-care capability: Unlike MRI or biopsy, ultrasound
can be performed during routine visits for immediate clinical de-
cisions [164]. Dynamic assessment: Ultrasound provides real-time
hepatic hemodynamics evaluation and can incorporate functional
challenges to assess metabolic reserve [165,166]. Treatment mon-
itoring: mpUS enables frequent assessments of therapeutic inter-
ventions [167], with ultrasound parameters correlating to histo-
logical improvement during treatment [168,169]. Multiparametric
ultrasound addresses drug selection limitations through phenotype
identification by integrating steatosis, fibrosis, inflammatory, and
hemodynamic parameters to identify distinct phenotypic clusters
[170]. For instance:

. High-fat, low-fibrosis, metabolic phenotype — GLP-1
RA or THR-B agonist

. Moderate fat, high inflammation, progressive fibrosis —
PPAR agonist or FXR agonist

. Established fibrosis with active fibrogenesis — antifi-
brotic therapy

. Portal hypertension features — consideration for be-

ta-blockers or novel portal hypertension therapies [171,172].
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Risk stratification: Composite scores derived from multiple mpUS
parameters could stratify patients according to progression risk
more accurately than single biomarkers [173]. Machine learning
algorithms trained on multiparametric data may predict which pa-
tients will progress to advanced disease, enabling targeted inter-
vention [174,175] Response prediction: Baseline multiparametric
profiles may predict treatment response. Early studies suggest that
certain elastographic patterns or combinations of parameters are
associated with better therapeutic responses to specific drug class-
es [176,177]. Serial mpUS assessments can detect early changes in
multiple disease parameters, providing earlier signals of treatment
efficacy than waiting for histological or clinical endpoints [178]. For
example, reductions in hepatic fat (weeks), inflammation markers
(months), and fibrosis (months to years) can be tracked in par-
allel [179]. Different parameters can be emphasized for different
therapeutic mechanisms, such as fat quantification for metabolic
therapies, stiffness for anti-fibrotics, and hemodynamic parameters
for portal hypertension-targeted interventions [180].

3.5: Implementation Challenges and Future Directions

Despite its promise, multiparametric ultrasound faces implementa-
tion challenges [181]: Standardization requires minimizing equip-
ment and interpretation variability through protocols and training
[182,183]. International guidelines exist but need wider adoption
[184]. Validation: While individual mpUS components are validat-
ed, comprehensive protocols need validation against histological
outcomes [185]. Studies correlating mpUS phenotypes with treat-
ment outcomes are needed [186]. Integration: Precision medicine
requires combining mpUS with biomarkers, genetic scores, and
microbiome data [187,188], necessitating multimodal frameworks
[189]. Artificial intelligence can enhance mpUS through automat-
ed analysis and decision support [190,191], but requires diverse
datasets for validation [192]. Clinical trials should incorporate stan-
dardized mpUS protocols [193] to accelerate drug development
[194]. Healthcare integration requires evidence of clinical utility
and cost-effectiveness [195,196] for successful implementation in
practice guidelines and workflows.

3.6: Current Elastography Methods: Single-Parameter Lim-
itations

While elastography advances imaging techniques, current meth-
ods like TE and SWE have limitations for MAFLD phenotyping
[197,198]. LSM reflects fibrosis, inflammation, steatosis, and vas-
cular congestion [199,200]. In MAFLD patients, steatohepatitis
increases LSM values by 20-30% independent of fibrosis stage,
affecting F2-F3 distinction [201,202]. LSM decreases may occur
without fibrosis regression [203,204]. Elastography cannot differ-
entiate between active fibrogenesis and stable fibrotic tissue [205].
Patients with identical LSM values may have different prognoses—
one with active MASH and progressing fibrosis, another with re-
solved inflammation [206]. TE shows high failure rates in obese
patients, the main MAFLD risk group [208,209]. The XL probe
reduces failures but may underestimate fibrosis [210]. Central obe-
sity affects signal quality [211]. 2D-SWE shows improved feasibil-
ity in obese patients [212,213]. Technical variability exists between
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platforms, with LSM values differing by 20-40% across devices
[214,215]. Factors like fasting status and operator experience affect
measurements [216,217]. Lack of unified cutoffs limits research
generalizability [218]. Guidelines recommend different thresholds
for TE and 2D-SWE (219). TE provides single measurements as-
suming homogeneous disease distribution [220]. MAFLD exhibits
heterogeneous fibrosis patterns [221]. 2D-SWE enables stiffness
visualization but samples limited liver volume [222,223]. Standard
elastography provides only stiffness information without assessing
other parameters [224]. Patients may have low LSM but severe ste-
atosis requiring intervention [226]. Elastography detects advanced
fibrosis but performs poorly in early stages FO-F2 [227,228]. Most
MAFLD patients present with early disease [229]. Early F1-F2 fi-
brosis associates with increased mortality [230,231]. LSM’s predic-
tive ability for outcomes remains suboptimal [232,233]. Composite
models show better prognostic performance [234,235].

3.7: The Challenge of Mixed Phenotypes and Comorbid
Conditions

MAFLD patients present with complex phenotypes involving
concurrent processes that affect disease behavior and prognosis
[236,237]. Current diagnostics inadequately characterize these phe-
notypes. A) Concurrent Liver Iron: Hepatic iron accumulation oc-
curs in 30-40% of MAFLD patients (238,239). The coexistence of
steatosis and iron creates distinct pathophysiology. B) Synergistic
hepatotoxicity: Iron and lipids increase oxidative stress and cell in-
jury [240,241]. Combined steatosis and iron overload cause more
severe inflammation than isolated steatosis [242,243]. Iron-cat-
alyzed Fenton reaction generates hydroxyl radicals promoting
MASH [244]. C) Altered disease progression: MAFLD patients
with iron show 2-3-fold higher risk of advanced fibrosis [245,246].
Iron stimulates collagen synthesis and fibrogenic pathways
[247,248,249]. D)Cardiovascular impact: Iron overload increases
cardiovascular risk through endothelial dysfunction [250,251,252].
Combined metabolic syndrome, MAFLD, and iron create high
cardiac risk [253]. E) Metabolic effects: Iron impairs insulin sig-
naling [254,255] and increases diabetes prevalence [256,257]. F)
Treatment implications: Iron overload affects treatment priorities
[258]. Phlebotomy may improve insulin sensitivity and slow fibro-
sis [259,260]. Iron reduction improves metabolic parameters in
MAFLD patients [261,262,263]. GDiagnostic challenges: Standard
tests cannot detect hepatic iron [264]. Serum ferritin increases with
inflammation, obesity, and metabolic syndrome, reducing specific-
ity in MAFLD [265,266]. Transferrin saturation shows poor sen-
sitivity [267]. Liver biopsy remains reference standard [268]. MRI
provides accurate assessment but increases cost [269,270]. H) Iron
deposition increases liver stiffness, causing fibrosis overestima-
tion [271,272]. MAFLD patients with iron overload show higher
LSM [273]. This confounding remains unaddressed [274]. I) Met-
ALD combines metabolic dysfunction and alcohol consumption
(275,276). Many patients with metabolic risk factors consume alco-
hol above MAFLD thresholds [277,278]. These factors accelerate
liver injury [279], with faster fibrosis progression than MAFLD
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alone [280,281]. Alcohol increases cirrhosis risk in metabolically
dysfunctional patients [282]. Current criteria poorly address mixed
phenotypes [283,284,285]. MetALD patients need interventions
for both conditions (286). MAFLD treatments may be contrain-
dicated with alcohol use [287], while focusing on alcohol cessation
ignores metabolic factors [288]. Elastography shows reduced ac-
curacy in MetALD [289,290,291]. J) Other comorbidities include
viral hepatitis, autoimmune hepatitis, and genetic immune overlap.
HBV/HCYV infection in MAFLD accelerates fibrosis and increas-
es cancer risk [294,295]. These patients develop cirrhosis earlier
[296,297. Viral replication and metabolic dysfunction activate fi-
brogenic pathways [298]. Treated HCV patients with metabolic
dysfunction show progression [299,300]. Treatment requires viral
and fibrosis assessment [301,302]. Autoimmune conditions can
coexist with MAFLD (303). Metabolic syndrome occurs in many
AIH/PBC patients [304]. Steatosis may delay immunosuppressive
therapy [305,306]. Both conditions share elevated aminotransfer-
ase and hypergammaglobulinemia [307]. Corticosteroids worsen
metabolic dysfunction (308), while weight gain worsens MAFLD
[309,310]. Genetic variants PNPLA3 1148M, TM6SF2 E167K,
GCKR, and MBOATTY create distinct MAFLD phenotypes [311],
occurring in 40-50% Hispanic and 20-25% European individ-
uals. These variants increase disease progression and HCC risk
[312,313]. PNPLAS risk alleles predict severity independent of
metabolic syndrome [314]. Current methods cannot identify ge-
netic risk phenotypes [318], leading to different prognoses [319].
Genetic information integration with clinical data is essential for
risk stratification [320].

3.8. Implications for Multiparametric Assessment

These mixed phenotypes and comorbid conditions highlight the
need for comprehensive multiparametric evaluations rather than
single-parameter diagnostics [321]. An optimal diagnostic platform
should assess multiple pathological processes including steatosis,
fibrosis, inflammation, iron content, and hemodynamics in one ex-
amination [322], combined with serological markers, genetic risk
scores, and metabolic profiling [323]. Machine learning can identify
distinct phenotypic subgroups (pure metabolic MAFLD, MetALD,
iron-loaded MAFLD, genetic high-risk) based on multiparametric
signatures [324]. Patients should receive targeted therapies based
on their pathophysiological drivers: phlebotomy for iron-loaded
cases, alcohol intervention for MetALD, and metabolic therapy for
genetically high-risk individuals [325]. Track relevant parameters
for each phenotype, such as iron quantification in iron overload
and hepatocellular carcinoma surveillance in PNPLA3 homozy-
gotes [326]. Multiparametric ultrasound with point-of-care iron as-
sessment and integrated genetic and serological data enables com-
prehensive phenotyping [327]. Advanced ultrasound techniques
may enable iron quantification through acoustic quantification
[328]. Integration of ultrasound parameters with clinical, labora-
tory, and genetic data through Al could create phenotypic profiles
capturing MAFLD complexity in patients [329,330] (Figure 2).
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Figure 2: Future Status of MAFLD Management.

3. Conclusion

The complexity of MAFLD and expanding therapeutics create an
urgent need for comprehensive non-invasive disease characteriza-
tion. Current tools, including liver biopsy, biomarkers, and imag-
ing, have limitations in disease classification and progression pre-
diction, impeding precision medicine. Multiparametric ultrasound
provides integrated assessment of steatosis, fibrosis, inflammation,
and hemodynamics on a single, cost-effective platform. mpUS en-
ables comprehensive phenotyping to identify responsive patients,
stratify risks, and monitor treatment efficacy. For mpUS to guide
MAFLD management, standardization, validation, and integration
with biomarkers and guidelines are essential. These developments
will transform MAFLD care from empirical to personalized thera-
peutic strategies, improving outcomes for millions affected.
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