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1. Abstract 

Metabolic dysfunction-associated fatty liver disease (MAFLD) 

is an escalating global health concern, impacting approximately 

25-30% of the global population. The heterogeneous nature of 

MAFLD, which spans a spectrum from simple steatosis to steato- 

hepatitis and fibrosis, necessitates precise phenotyping to optimize 

therapeutic strategies. Current diagnostic and monitoring meth- 

odologies have significant limitations in terms of disease classifi- 

cation, risk stratification, and treatment selection. Although liver 

biopsy is regarded as the reference standard, it is invasive, costly, 

and subject to sampling variability. Conventional imaging modal- 

ities and serum biomarkers provide an incomplete assessment of 

the multifaceted pathophysiology of MAFLD. Emerging pharma- 

cotherapies targeting various pathogenic pathways require accurate 

identification of specific disease phenotypes and severity stages. 

Multiparametric ultrasound (mpUS), which integrates B-mode as- 

sessment, elastography techniques, quantitative fat quantification, 

inflammation markers, and vascular parameters, provides a com- 

prehensive, noninvasive solution for MAFLD characterization. 

This review examines the critical need for mpUS in addressing 

current diagnostic limitations, enabling precise disease phenotyp- 

ing, and guiding personalized treatment selection and monitoring 

of therapeutic response. We propose that mpUS should serve as 

the cornerstone of strategic MAFLD management, facilitating the 

transition from one-size-fits-all approaches to precision medicine 

for this complex disorder. 
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2. Introduction 

2.1 : The Growing Burden of MAFLD 

Metabolic dysfunction-associated fatty liver disease (MAFLD) has 

emerged as the most prevalent chronic liver condition worldwide, 

with its burden closely paralleling the epidemics of obesity, type 

2 diabetes, and metabolic syndrome [1,2]. The recent nomencla- 

ture shift from non-alcoholic fatty liver disease (NAFLD) to MA- 

FLD reflects a paradigm shift toward positive diagnostic criteria 

based on metabolic dysfunction rather than exclusion of alcohol 

consumption [3]. This evolution in terminology underscores the 

fundamental pathophysiological basis of metabolic dysregulation. 

MAFLD encompasses a wide spectrum of liver pathologies, rang- 

ing from simple hepatic steatosis to metabolic dysfunction-associ- 

ated steatohepatitis (MASH, formerly NASH), advanced fibrosis, 

cirrhosis, and hepatocellular carcinoma [4,5]. Progressive forms of 

MAFLD, particularly those with significant fibrosis, are associated 

with increased liver-related morbidity, cardiovascular disease, and 

all-cause mortality [6,7]. Notably, MAFLD has become a leading 

indication for liver transplantation in many developed countries, 

and its prevalence continues to increase globally [8,9]. One of the 

most significant challenges in MAFLD management is the marked 

heterogeneity in disease presentation, progression and outcomes 

[10]. Patients with comparable degrees of steatosis may exhibit 

vastly different trajectories, with some progressing rapidly to fibro- 

sis, while others remain stable for decades [11]. This heterogeneity 

reflects the complex interplay between genetic factors, metabol- 

ic comorbidities, environmental exposures, and gut microbiome 

composition [12,13]. The multifactorial pathogenesis of MAFLD 

involves lipotoxicity, oxidative stress, mitochondrial dysfunction, 

endoplasmic reticulum stress, inflammatory cascades, and fibro- 

genic signaling [14,15]. Different patients may exhibit predominant 

activation of specific pathogenic pathways, potentially requiring 

tailored therapeutic approaches for each patient. However, current 

diagnostic paradigms inadequately capture this pathophysiological 

complexity, limiting our ability to deliver precision medicine [16]. 

2.2 : The Treatment Landscape Evolution 

The therapeutic landscape for MAFLD has evolved dramatically 

in recent years, with multiple pharmacological agents in various 

stages of clinical development targeting distinct pathogenic mech- 

anisms [17,18]. These include: 

• Metabolic modulators: Peroxisome proliferator-activated recep- 

tor (PPAR) agonists, glucagon-like peptide-1 receptor agonists 

(GLP-1 RAs), and thyroid hormone receptor-β agonists address- 

ing insulin resistance and lipid metabolism [19,20] 

• Anti-inflammatory agents: Chemokine receptor antagonists and 

anti-inflammatory compounds targeting hepatic inflammation [21]. 

• Antifibrotic therapies: Agents targeting fibrogenesis pathways, 

including FXR agonists and ASK1 inhibitors [22,23]. 

• Combination therapies: Dual or triple combinations addressing 

multiple pathogenic pathways simultaneously [24]. 

Each therapeutic class demonstrates efficacy in specific patient 

subsets, disease stages or pathophysiological contexts. For instance, 

GLP-1 receptor agonists are particularly beneficial in patients with 

concomitant diabetes and obesity [25], whereas antifibrotic agents 

may be most appropriate for patients with established fibrosis (26). 

The emerging principle of precision medicine in MAFLD neces- 

sitates accurate patient phenotyping to match individuals with the 

most appropriate therapeutic interventions [27]. Despite advances 

in therapeutics, a significant gap persists between the need for pre- 

cise disease characterization and the capabilities of current diag- 

nostic tools (28). This diagnostic gap manifests in several critical 

areas, which will be explored in detail in this review. 

3. Discussion 

3.1 : Liver Biopsy 

has traditionally served as the reference standard for MAFLD di- 

agnosis, grading, and staging (29,30). Histopathological assessment 

evaluates steatosis, inflammation, hepatocellular ballooning, and fi- 

brosis using standardized scoring systems like the NAFLD Activity 

Score and fibrosis staging [31]. However, liver biopsy has signifi- 

cant limitations in clinical practice. A) Sampling variability: A liver 

biopsy samples only 1/50,000 of liver volume [32]. MAFLD shows 

heterogeneous distribution of pathological features [33], leading 

to fibrosis stage misclassification in 20-30% of cases [34,35]. B) 

Invasiveness and complications: Liver biopsy risks include pain 

(20-30%), bleeding (0.3-0.6%), and death (1 in 10,000) [37,38], 

limiting its use for screening and monitoring [39]. C) Inter-ob- 

server variability: Expert pathologists show moderate agreement 

(kappa 0.4-0.7) for steatosis grading, inflammation, and ballooning 

[41,42], with fibrosis staging discordance in 10-30% of cases [43]. 

D) Cost and accessibility: Biopsy costs $2,000-5,000 and requires 

specialized expertise (44,45), limiting availability in resource-limit- 

ed settings [46]. E) Unsuitability for monitoring: Its invasive nature 

and cost prevent frequent disease monitoring [47,48]. F) Limited 

functional information: Histopathology provides static tissue ar- 

chitecture views but minimal insight into metabolic processes and 

hepatic function (49,50) (Figure 1). 
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Figure 1: Tools for Evaluation of MAFLD. 

3.2. Serum Biomarkers: Incomplete Windows into Disease 

Serum biomarkers and scoring systems have been developed to 

assess MAFLD non-invasively, focusing on fibrosis detection [51]. 

These include simple indices (FIB-4, NAFLD Fibrosis Score, 

APRI) and proprietary panels (Enhanced Liver Fibrosis test and 

Fibro Test) [52,53]. While useful for excluding advanced fibrosis in 

low-risk populations, these tools have limitations. Most biomarker 

panels only distinguish advanced fibrosis (≥F3) from earlier stag- 

es but cannot differentiate intermediate stages (F1 vs. F2) [54,55], 

insufficient for precision medicine [56]. Serum biomarkers primar- 

ily assess fibrosis, providing minimal information about steatosis, 

inflammation, and metabolic dysfunction [57], limiting their utility 

for treatment selection [58]. Additionally, biomarker performance 

is affected by age, sex, BMI, diabetes, and medications [59,60]. 

FIB-4 overestimates fibrosis in elderly patients and underestimates 

it in young individuals [61], reducing diagnostic accuracy across 

patient populations [62]. D) Inability to accurately assess steatosis: 

Although the controlled attenuation parameter (CAP) addresses 

this gap in vibration-controlled transient elastography platforms, 

pure serum biomarkers do not reliably quantify hepatic fat content 

[63]. The cytokeratin-18 fragments show promise for detecting he- 

patocyte apoptosis and inflammation but lack widespread valida- 

tion and standardization [64,65]. E) Poor monitoring of treatment 

response: Serum biomarkers often show discordance with histo- 

logical changes during therapeutic interventions [66]. Their slow 

response to treatment and significant biological variability limits 

their utility in monitoring disease modification [67,68]. 

 

3.3 : Conventional Imaging: Qualitative and Limited 

Traditional ultrasound, CT, and MRI have distinct limitations for 

MAFLD assessment. B-mode ultrasound detects hepatic steatosis 

through echogenicity but is qualitative, operator-dependent, and 

insensitive to steatosis <20-30% [69,70]. It cannot differentiate 

steatosis grades or assess inflammation without elastography [71]. 

Its performance deteriorates in obese patients, who have highest 

MAFLD risk [72]. Unenhanced CT identifies moderate to severe 

steatosis through liver-to-spleen attenuation ratios but uses ioniz- 

ing radiation [73,74]. CT shows poor sensitivity for mild steato- 

sis and cannot assess inflammation or early fibrosis [75]. While 

MRI-PDFF provides accurate steatosis assessment and serves as 

the non-invasive reference standard [76,77], standard MRI cannot 

assess inflammation or fibrosis. MRE evaluates fibrosis effectively 

[78] but requires specialized equipment not widely available [79]. 

Combined MRI-PDFF and MRE assessment is comprehensive 

but expensive ($1,000-3,000), limiting accessibility [80,81]. Con- 

ventional imaging typically assesses parameters separately, with 

patients undergoing multiple tests without integration into a com- 

prehensive profile [82]. This fragmented approach fails to capture 

MAFLD’s multidimensional nature [83]. 

3.4 : Multiparametric Ultrasound: Addressing the Diagnostic 

and Therapeutic Gaps 

Multiparametric ultrasound represents an integrated solution to the 

limitations outlined above, combining multiple ultrasound-based 

techniques into a comprehensive disease assessment [136,137]. 

The mpUS approach typically integrates 
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3.4.1 : Core Components of Multiparametric Ultrasound 

Quantitative steatosis assessment: Advanced ultrasound techniques 

like attenuation imaging, backscatter coefficient analysis, and speed 

of sound measurement enable hepatic fat quantification compara- 

ble to MRI-PDFF [138,139]. These methods provide continuous 

fat quantification across the steatosis range [140]. Elastography 

for fibrosis staging: Shear wave elastography (SWE) and transient 

elastography measure liver stiffness for fibrosis [141,142]. Point 

and 2D-SWE provide reliable fibrosis staging similar to MRE for 

advanced fibrosis [143,144]. Meta-analyses show AUROCs >0.85 

for significant fibrosis and >0.90 for cirrhosis [145,146]. Inflam- 

mation markers: Viscosity plane wave ultrasound and viscoelastic 

parameters may indicate necro-inflammatory activity [147,148]. 

Dispersion slope parameters help distinguish MASH from simple 

steatosis [149]. Vascular assessment: Doppler ultrasound assesses 

portal vein velocity and hemodynamics to identify portal hyper- 

tension [150,151,152]. Spleen stiffness correlates with portal hy- 

pertension and complements liver stiffness assessment (153,154]. 

Texture analysis: Radiomics and machine learning extract features 

from ultrasound images to identify disease patterns and outcomes 

[155,156]. 

3.4.2 : Advantages of Multiparametric Ultrasound for MA- 

FLD Management 

Comprehensive phenotyping: mpUS integrates multiple parame- 

ters to create patient profiles capturing steatosis severity, fibrosis 

stage, inflammation, and hemodynamics [157]. This enables pre- 

cision phenotyping unavailable with single-parameter approaches 

[158]. Noninvasive and safe: Ultrasound has no radiation expo- 

sure, allowing safe repeated examinations for disease monitoring 

[159,160]. Cost-effective and accessible: mpUS is less expensive 

than MRI ($200-500 vs. $1,000-3,000) and more widely available 

in primary care settings [161,162], enabling population screening 

[163]. Point-of-care capability: Unlike MRI or biopsy, ultrasound 

can be performed during routine visits for immediate clinical de- 

cisions [164]. Dynamic assessment: Ultrasound provides real-time 

hepatic hemodynamics evaluation and can incorporate functional 

challenges to assess metabolic reserve [165,166]. Treatment mon- 

itoring: mpUS enables frequent assessments of therapeutic inter- 

ventions [167], with ultrasound parameters correlating to histo- 

logical improvement during treatment [168,169]. Multiparametric 

ultrasound addresses drug selection limitations through phenotype 

identification by integrating steatosis, fibrosis, inflammatory, and 

hemodynamic parameters to identify distinct phenotypic clusters 

[170]. For instance: 

• High-fat, low-fibrosis, metabolic phenotype → GLP-1 

RA or THR-β agonist 

• Moderate fat, high inflammation, progressive fibrosis → 

PPAR agonist or FXR agonist 

• Established fibrosis with active fibrogenesis → antifi- 

brotic therapy 

• Portal hypertension features → consideration for be- 

ta-blockers or novel portal hypertension therapies [171,172]. 

Risk stratification: Composite scores derived from multiple mpUS 

parameters could stratify patients according to progression risk 

more accurately than single biomarkers [173]. Machine learning 

algorithms trained on multiparametric data may predict which pa- 

tients will progress to advanced disease, enabling targeted inter- 

vention [174,175] Response prediction: Baseline multiparametric 

profiles may predict treatment response. Early studies suggest that 

certain elastographic patterns or combinations of parameters are 

associated with better therapeutic responses to specific drug class- 

es [176,177]. Serial mpUS assessments can detect early changes in 

multiple disease parameters, providing earlier signals of treatment 

efficacy than waiting for histological or clinical endpoints [178]. For 

example, reductions in hepatic fat (weeks), inflammation markers 

(months), and fibrosis (months to years) can be tracked in par- 

allel [179]. Different parameters can be emphasized for different 

therapeutic mechanisms, such as fat quantification for metabolic 

therapies, stiffness for anti-fibrotics, and hemodynamic parameters 

for portal hypertension-targeted interventions [180]. 

3.5 : Implementation Challenges and Future Directions 

Despite its promise, multiparametric ultrasound faces implementa- 

tion challenges [181]: Standardization requires minimizing equip- 

ment and interpretation variability through protocols and training 

[182,183]. International guidelines exist but need wider adoption 

[184]. Validation: While individual mpUS components are validat- 

ed, comprehensive protocols need validation against histological 

outcomes [185]. Studies correlating mpUS phenotypes with treat- 

ment outcomes are needed [186]. Integration: Precision medicine 

requires combining mpUS with biomarkers, genetic scores, and 

microbiome data [187,188], necessitating multimodal frameworks 

[189]. Artificial intelligence can enhance mpUS through automat- 

ed analysis and decision support [190,191], but requires diverse 

datasets for validation [192]. Clinical trials should incorporate stan- 

dardized mpUS protocols [193] to accelerate drug development 

[194]. Healthcare integration requires evidence of clinical utility 

and cost-effectiveness [195,196] for successful implementation in 

practice guidelines and workflows. 

3.6 : Current Elastography Methods: Single-Parameter Lim- 

itations 

While elastography advances imaging techniques, current meth- 

ods like TE and SWE have limitations for MAFLD phenotyping 

[197,198]. LSM reflects fibrosis, inflammation, steatosis, and vas- 

cular congestion [199,200]. In MAFLD patients, steatohepatitis 

increases LSM values by 20-30% independent of fibrosis stage, 

affecting F2-F3 distinction [201,202]. LSM decreases may occur 

without fibrosis regression [203,204]. Elastography cannot differ- 

entiate between active fibrogenesis and stable fibrotic tissue [205]. 

Patients with identical LSM values may have different prognoses— 

one with active MASH and progressing fibrosis, another with re- 

solved inflammation [206]. TE shows high failure rates in obese 

patients, the main MAFLD risk group [208,209]. The XL probe 

reduces failures but may underestimate fibrosis [210]. Central obe- 

sity affects signal quality [211]. 2D-SWE shows improved feasibil- 

ity in obese patients [212,213]. Technical variability exists between 
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platforms, with LSM values differing by 20-40% across devices 

[214,215]. Factors like fasting status and operator experience affect 

measurements [216,217]. Lack of unified cutoffs limits research 

generalizability [218]. Guidelines recommend different thresholds 

for TE and 2D-SWE (219). TE provides single measurements as- 

suming homogeneous disease distribution [220]. MAFLD exhibits 

heterogeneous fibrosis patterns [221]. 2D-SWE enables stiffness 

visualization but samples limited liver volume [222,223]. Standard 

elastography provides only stiffness information without assessing 

other parameters [224]. Patients may have low LSM but severe ste- 

atosis requiring intervention [226]. Elastography detects advanced 

fibrosis but performs poorly in early stages F0-F2 [227,228]. Most 

MAFLD patients present with early disease [229]. Early F1-F2 fi- 

brosis associates with increased mortality [230,231]. LSM’s predic- 

tive ability for outcomes remains suboptimal [232,233]. Composite 

models show better prognostic performance [234,235]. 

3.7 : The Challenge of Mixed Phenotypes and Comorbid 

Conditions 

MAFLD patients present with complex phenotypes involving 

concurrent processes that affect disease behavior and prognosis 

[236,237]. Current diagnostics inadequately characterize these phe- 

notypes. A) Concurrent Liver Iron: Hepatic iron accumulation oc- 

curs in 30-40% of MAFLD patients (238,239). The coexistence of 

steatosis and iron creates distinct pathophysiology. B) Synergistic 

hepatotoxicity: Iron and lipids increase oxidative stress and cell in- 

jury [240,241]. Combined steatosis and iron overload cause more 

severe inflammation than isolated steatosis [242,243]. Iron-cat- 

alyzed Fenton reaction generates hydroxyl radicals promoting 

MASH [244]. C) Altered disease progression: MAFLD patients 

with iron show 2-3-fold higher risk of advanced fibrosis [245,246]. 

Iron stimulates collagen synthesis and fibrogenic pathways 

[247,248,249]. D)Cardiovascular impact: Iron overload increases 

cardiovascular risk through endothelial dysfunction [250,251,252]. 

Combined metabolic syndrome, MAFLD, and iron create high 

cardiac risk [253]. E) Metabolic effects: Iron impairs insulin sig- 

naling [254,255] and increases diabetes prevalence [256,257]. F) 

Treatment implications: Iron overload affects treatment priorities 

[258]. Phlebotomy may improve insulin sensitivity and slow fibro- 

sis [259,260]. Iron reduction improves metabolic parameters in 

MAFLD patients [261,262,263]. GDiagnostic challenges: Standard 

tests cannot detect hepatic iron [264]. Serum ferritin increases with 

inflammation, obesity, and metabolic syndrome, reducing specific- 

ity in MAFLD [265,266]. Transferrin saturation shows poor sen- 

sitivity [267]. Liver biopsy remains reference standard [268]. MRI 

provides accurate assessment but increases cost [269,270]. H) Iron 

deposition increases liver stiffness, causing fibrosis overestima- 

tion [271,272]. MAFLD patients with iron overload show higher 

LSM [273]. This confounding remains unaddressed [274]. I) Met- 

ALD combines metabolic dysfunction and alcohol consumption 

(275,276). Many patients with metabolic risk factors consume alco- 

hol above MAFLD thresholds [277,278]. These factors accelerate 

liver injury [279], with faster fibrosis progression than MAFLD 

alone [280,281]. Alcohol increases cirrhosis risk in metabolically 

dysfunctional patients [282]. Current criteria poorly address mixed 

phenotypes [283,284,285]. MetALD patients need interventions 

for both conditions (286). MAFLD treatments may be contrain- 

dicated with alcohol use [287], while focusing on alcohol cessation 

ignores metabolic factors [288]. Elastography shows reduced ac- 

curacy in MetALD [289,290,291]. J) Other comorbidities include 

viral hepatitis, autoimmune hepatitis, and genetic immune overlap. 

HBV/HCV infection in MAFLD accelerates fibrosis and increas- 

es cancer risk [294,295]. These patients develop cirrhosis earlier 

[296,297. Viral replication and metabolic dysfunction activate fi- 

brogenic pathways [298]. Treated HCV patients with metabolic 

dysfunction show progression [299,300]. Treatment requires viral 

and fibrosis assessment [301,302]. Autoimmune conditions can 

coexist with MAFLD (303). Metabolic syndrome occurs in many 

AIH/PBC patients [304]. Steatosis may delay immunosuppressive 

therapy [305,306]. Both conditions share elevated aminotransfer- 

ase and hypergammaglobulinemia [307]. Corticosteroids worsen 

metabolic dysfunction (308), while weight gain worsens MAFLD 

[309,310]. Genetic variants PNPLA3 I148M, TM6SF2 E167K, 

GCKR, and MBOAT7 create distinct MAFLD phenotypes [311], 

occurring in 40-50% Hispanic and 20-25% European individ- 

uals. These variants increase disease progression and HCC risk 

[312,313]. PNPLA3 risk alleles predict severity independent of 

metabolic syndrome [314]. Current methods cannot identify ge- 

netic risk phenotypes [318], leading to different prognoses [319]. 

Genetic information integration with clinical data is essential for 

risk stratification [320]. 

3.8. Implications for Multiparametric Assessment 

These mixed phenotypes and comorbid conditions highlight the 

need for comprehensive multiparametric evaluations rather than 

single-parameter diagnostics [321]. An optimal diagnostic platform 

should assess multiple pathological processes including steatosis, 

fibrosis, inflammation, iron content, and hemodynamics in one ex- 

amination [322], combined with serological markers, genetic risk 

scores, and metabolic profiling [323]. Machine learning can identify 

distinct phenotypic subgroups (pure metabolic MAFLD, MetALD, 

iron-loaded MAFLD, genetic high-risk) based on multiparametric 

signatures [324]. Patients should receive targeted therapies based 

on their pathophysiological drivers: phlebotomy for iron-loaded 

cases, alcohol intervention for MetALD, and metabolic therapy for 

genetically high-risk individuals [325]. Track relevant parameters 

for each phenotype, such as iron quantification in iron overload 

and hepatocellular carcinoma surveillance in PNPLA3 homozy- 

gotes [326]. Multiparametric ultrasound with point-of-care iron as- 

sessment and integrated genetic and serological data enables com- 

prehensive phenotyping [327]. Advanced ultrasound techniques 

may enable iron quantification through acoustic quantification 

[328]. Integration of ultrasound parameters with clinical, labora- 

tory, and genetic data through AI could create phenotypic profiles 

capturing MAFLD complexity in patients [329,330] (Figure 2). 
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3. Conclusion 

Figure 2: Future Status of MAFLD Management.  

 

7. Hagström H. The fibrosis stage, but not NASH, predicts mortali- 

The complexity of MAFLD and expanding therapeutics create an 

urgent need for comprehensive non-invasive disease characteriza- 

tion. Current tools, including liver biopsy, biomarkers, and imag- 

ing, have limitations in disease classification and progression pre- 

diction, impeding precision medicine. Multiparametric ultrasound 

provides integrated assessment of steatosis, fibrosis, inflammation, 

and hemodynamics on a single, cost-effective platform. mpUS en- 

ables comprehensive phenotyping to identify responsive patients, 

stratify risks, and monitor treatment efficacy. For mpUS to guide 

MAFLD management, standardization, validation, and integration 

with biomarkers and guidelines are essential. These developments 

will transform MAFLD care from empirical to personalized thera- 

peutic strategies, improving outcomes for millions affected. 
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